
AD A 29 180 SMOOTH SOLUTIONS TO A QUASI-LNEAR SYSTEM OF DIFFUSION /
EQUATIONS FOR A CE..U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER d U KIM APR 83

UNCLASSIFIED MRC-TSR-2510 DAAG29 80 C 0041 F/ U2(l N

mEEEE~hE~hE



1.0

iiiII,____2Iii 12.8

IIII1 m ii , lin

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A



MRC Technical Summary, Report #2510

SMOOTH SOLUTIONS TO A QUASI-LINEAR

Mathematics Research Center
* University of Wisconsin- Madison

610 Walnut Street
* Madison, Wisconsin 53706

April 1983£ -.
LETE

(Received November 9, 1982) U

L~j Approved for public release
.1 Distribution unlimited

kninored by

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, 0. C. 20550
Research Triangle Park
north Carolina 27709

83 06 07 071'



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

SMOOTH SOLUTIONS TO A QUASI-LINEAR SYSTEM OF DIFFUSION EQUATIONS
FOR A CERTAIN POPULATION MODEL

Jong Uhn Kim

Technical Summary Report #2510
April 1983

ABSTRACT

We prove the existence of smooth nonnegative solutions to the initial-

boundary value problem associated with the system of diffusion equations which

describes a certain population model:

I ut - A(c u + dIuv) + (E1 - aIu - bIv)u

vt = A(c 2v + d2uv) (E-2 a2 u - b2v)v, (t,x) e [0,m) x (0,1]

(**) u(0,x) - u0(x), v(0,x) = v0(x)

ux(t,O) = Ux(t,1) -vx(t,0) = V (t,1) - 0

where u and v denote the densities of two competing species. Using

Sobolevski's method, we establish the local existence of nonnegative solutions

under the hypothesis ci > 0, di > 0, Ei P 0, ai )k 0 and bi > 0, i - 1,2.

Under the additional hypothesis c1 = c2, we prove the global existence of

solutions by energy estimates.

AMS (MOS) Subject Classifications: 35K55, 35K60, 35B65, 92A15
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SIGNIFICANCE AND EXPLANATION

The system of diffusion equations (M) (see Abstract) proposed by

Kawasaki, Shigesada and Teramoto describes a population model of two competing

species with self- and cross-population pressures. The densities of the two

species are denoted by u and v. In this paper we-vtudy the initial-

boundary value problem associated with (*). The Neumann boundary condition

(.*0) corresponds to the case where the flux is zero at the boundary. Many

investigators have considered nonlinear diffusion systems arising from various

physical and biological problems. These equations, however, have a special

structure: the highest order derivatives are not coupled or, at least, the

coefficient matrix for the highest order derivatives is positive definite.

This is not the case for the system (M) and hence, some of the techniques

which are effective for those systems are no longer applicable to our case.

Nevertheless, we can still use Sobolevsklos method (see Reference [2]) to

establish the local existence of solutions. Under the special assumption

c- ' c2  in (), we can also prove the global existence of solutions by energy

estimates. The unusual structure of (M) seems to make it difficult to -ettle

the question of asymptotic stability of solutions.
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SMOOTH SOLUTIONS TO A QUASI-LINEAR SYSTEM OF DIFFUSION EQUATIONS

FOR A CERTAIN POPULATION MODEL

Jong Uhn Kim

0. Introduction

This paper deals with the Initial-boundary value problem for the system of equations

(o-1) { ( (1c + d Uv) + (Ei "au - bV)U{ T A(c2v + ,uV) + (E2 - a2 u- b2v)v, (Tx) e [0,-) X [0,1]
where Cj, di, E1 , ai and I , i - 1,2, are nonnegative constants. This system of

equations describes a model of two competing species with self- and cross-population

pressures. Here, u and v denote the population densities of the two competing

species. For the derivation of Equations (0-1), the reader is referred to [3]. From the

physical consideration, u and v should be nonnegative and (0-1) is subject to the

Neumann boundary condition:

(0-2) Ux(r,x) - vx(T,x) - 0 at x - 0,1

For the case when c1 > 0, c2 > 0, d, > 0 and d2 - 0, the stationary problem associated

with (0-1) was discussed in (4]. Also in its introduction, it was announced that Masuda

and Mimura have proved the global existence of nonnegative solutions to (0-1) in the above

case.

In this paper we shall prove the existence of smooth nonnegative solutions to (0-1)

with suitably smooth initial data under the assumption that ci > 0, di > 0, i - 1,2. In

Section 1, we establish the local existence of solutions by the method due to Sobolevski,

which is well presented in (2]. We employ the function spaces ts, a ) 0 (see Section 1),

which enable us to prove the C -regularit' of solutions for t > 0. Some properties of

9s which are necessary in the development of our arguments are proved in the Appendix.5r
In Section 2, we prove that the local solutions can be extended globally on [0,-) under

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-7927062,
Mod. 2.



the additional hypothesis that cl c2 > 0, but without any restriction on the size of

initial data.

we shall make some remarks on the structure of (0-1). First of all, we see that (0-1)

and (0-2) reduce to I t -A(u + uv) + (E I - a~u -b 1v)u

(3)vt .A('rV + UV) + (E 2 - a 2u -b 2v)v

(0-4) UX t ,x) -vx(t,x) - 0 at x - 0,1

through

c

u(T,x) -= cTX
d 2

(0-5) ;~~(T,X) - - VcTX

whr y )0 0 5  0, ai 1 0 and bi ) 0, i - 1,2. Throughout this paper we will
1

consider (0-3), (0-4) instead of (0-1), (0-2). it is interesting to observe some unusual

features possessed by (0-3). For simplicity, we shall consider

t . Mu + uv)
(0-6) 1 t-AI v
and the associated nonlinear operator S:

( 0 -7[ -A u + u v ) )
(0-7 F: -4(yv +uv]

Then, for smooth nonnegativ" Functions u and v satisfying the Neumann boundary

condition, (S(u),(U)) 2 2 is not nonnegative in general. In fact, it is strictly
L xL

negative if we take u - 100 + y + 6icoswx, v - 10 - coswx, for example. Hence, we expect

to have difficulty in obtaining energy estimates to establish global existen~e of -Iolutions

to (0-6). Nbow the linear operator associated with (0-7) is

-2-



(o-o1 I-fAU - (.Y + g)AvJ

where f and g are assumed to be given nonnegative functions. Then it is easy to see

that the right-hand side of (0-8) is not a strongly elliptic system in general. This also

suggests that the usual procedure to obtain energy estimates may not be effective.

However, if y - 1, i.e. c1 " 02, then we can make use of u - v as an intermediary

function to obtain necessary energy estimates. This is illustrated in Section 2. Finally

we report that the question of asymptotic stability of solutions remains open. In view of

the above remarks, it seems hopeless to get a uniform bound of the solution through energy

estimates. In the mean time, the structure of S discourages us from attempting to

construct an invariant set.

Agknowledftment. I am very grateful to Professor M. Crandll for his invaluable advice and

encouragement throughout this work. in particular, he pointed out some serious errors in

Section 1 and significantly simplified the original lengthy estimate of the L6-norm in

Section 2.

-3-



Section 1. Local Existence

As mentioned above, we shall use the method in (2]. Hance, we write Equations (0-3)

in the form of an abstract evolution equation and verify all the conditions prescribed in

the above reference. Let us define the linear operator As(t,w) as follows:

A t R t

(1-1) A Ct .w)I -j

R 8" v~ - fe Au - Y + qe s)AV]

where Re is a positive constant which will be determined later on and w = ~.Writinq
U*u ,* v ye , (0-3) is equivalent to

*(1-2) u I: + A. tD( .Th f:~ = r t4: 3),
Rt * ,R t

2e auv + CE - ae6 u- be a V)u*

(1-3) F 2e uR t ( -a x U

2e~~ ~ ~ 8 ::+( * - 5 a 8v)*

From now on, we shall suppress "*" and use both notations a)and (a,b) to denote the

same vector. For real a, we define

(1-4) -a n :on an e c and I Ian 12(1 + n 2 W2 
)a <

and if f a a cosnix and q b bconrx lie in *.I we write
n0 n _0 n

(1-5) (f,g) - a + (+ n T2)sa
A 0 2 n.i n n

and

(1-6) ifis .f If)/2.

Obviously, 0 * C * and 1I1I 1-1 8 if 8 1 > 82 - We also define

5s - 5 x* 5 08 *~fl - Igi a+ 3f15, for all (g,f) e x9, and

-4-



(1-7) L.2 (f e L2[O,1] ()f e L2(0,1], k -1...,M.

L2 is defined in an obvious way. When X and Y are Banach spaces, we denote by
L

B(XY' the set of all bounded linear operators from X into Y. Let f(x),g(x) be real-

valued functions in * +1, s ) 0, such that

Ifls+1,1glsI  e M <

and

fx),g(x) ) max(- , for all x e 0,11

Denote A (0,(g,f)) by A8. Then we have:

Proposition 1.1. There is a number R(s,M) ) 1 depending on s,M such that if

Rs ; R(s,14), (AI - A ) is a bounded linear operator on X. for all A e C with

ReX ( 0, and

01 -1 C(G,M)(1-8) I(AI - As)-lBx sI CSMII+

s B(X ,X + I1
a s

holds where C(s,M) is a positive constant which depends only on s,14 and is independent

of \,R,. Furthermore, (XI - As)-1 is a bounded linear operator from Xe into Xs+ 2

with

(1-9) I(XI - A ) B (X s s +2 ) 4 C(s,M), for all X e C, ReX C 0

(Proof). First we prove the above assertion in the case where s - m is a nonnegative

integer with f,g e * where a = l if m 0 0. Assume I0 , g 4 M and
a m if m Asf- 1 am

f(xg(x) ~max(- -1,- 1) for all x e [0,1J. Now we will follow the well-known procedure.

Suppose I~ E n ncosnwx e s, n - I fn cosn~xe 0 , u ~ u cosnrxC e and
n-0 n. n m n=O n m+2

v = v counwx e o+2 satisfy the equations:
n-O n

I-10 J (X - Rm)u + (1 + f0)Au + g 0 Av =

(A - R,)v + f0 u + (y + g) = ,
where X is a complex number with ReX 4 0, R, b 1, and f0 ,g0 are constants such that

fg 0 max(- -,- 1). Then, it is easily seen that for all n > 0,

4-5-



{A- R- (y + g 0 )n 2
i 2

c n 
+ 90n 2x

2 
Wnn

R s a 2 (X - )(1 + y + f0 + g0)n
2w

2 + (Y 
+ 90 

+ Yf 0 )n
4 V

4

and

2 2 2 2
102n I C n + (A - - (1 + f0 )nW2n

(A - R )2 - (A - R )(1 + y + f0 +  g0 }n 2 4+ (  + 
g4 

+  
0
)n  

*

Now we will estimate lunl and IVn'. Setting A - -M + iv, p ) 0, v e R, we can rewrite

(1-11), (1-12):s

1 (-1-R+iv)E n -(Y+g 0 
) n 2

2 Cn+g0 n2 W2nn
11 U n - U+R(P+R m) + (1A+R m) ( +Y+ 0 +g 0 )n 2w2+ ( y4g0+yf0) n 4w4 _ %P- i v { 2 ( +RM) + ( + y+f+g ) n 2 }

f 0 n 2 w
v2 

n+ (-U-R m+iV) n" ( 
1+f ) n2 w 2 Tn

v 22 2 22_(1-12)* vn .... .I1m~n~o~lln ____

(u+R) +(I+R )(l+y+ 0 +g 0 )n
2 2 + (y+g 0+Y 0 )n

4 4  2 -1iv{2( +R )+(1+y+f+g)n 2 2 }

CameI. (P.+m) - IVI - Ivl 2 - 2(M+R ) 2 +(P+R ')(l+Y+fo+go)n
2 w2 +(y+go+yfO)n

4 "14 }.

In this case, we use the inequality:

{(P + Rm) + (1 y + f0 + g 0 )n
2 v

2 1 2 l (V + R,12

+ (P + m)(1 + Y + f 0 + g0
) n 2 w2 + ( Y 

+ go + Yf 0 )n 
4 4

to derive

(1-13) lUnI ' IA1 + R n 1
m

amd

(1-14) Ini'C --- 4 R n( 1 - 4 1I ~ n < I - ,l + ( I E r t l +  nI ) D

where C is a positive constant independent of A,f0 ,g0 'nCh 1,n and Rm .
Case 2. (+R*) - IVl I IVl

2  
and lvj 2 ) 2{(I+R ) 2+(+R M )(l+y+f 0+g)n 2T2+( g0+0)n4,4

Case 3. " (M + R ) ' p +
2 Is

Case 4. 1v 1 4 ( + R).

For Cases 2, 3, 4, it is easy to obtain (1-13), (1-14). Therefore, we conclude that (1-

13), (1-14) hold for all A e C, ReA 4 n and all )P 1 where C is a positive constant

-6-



independent of ),f0 #g0 nn,,n and R . Next we shall estimate v
2
n
2Iun I and

2na2IVn1 , for n # 0. from (I), (1-12)*, we get

22 (-K+iy)g, - (y+go)Fn + gon
n x2 + (1+Y+f0 +g0 )x + (y+ 0+yf0 ) _ y2 - iy(2x+l+y+f0 +g0 )

and

21-1f)o2 + (-x+iy), - (C+fo) %

Tn 2 y2n 2 + (I+Y+f +go)x + (¥+gO+yfO) - - iy(2x+I+Y~f0 +gO)

where 0. v

vheo m 2"- 
• 0, ¥' 22

n1 2S W

Cae 1 x2 + (Y + go + Yf ) a yi2 2{x + 1 + + f 0 
+  g ) + 1 + O + g 0o + )

In this8 case, we use the inequality: (x + I + Y + f 0 + g0
) 2 ) x 2 + 

(I + Y + f 0 
+ g0 ) k

+ Y + 9 O + Y f 0  to derive that

(1-17) 1 2 n 2 Iun C C(IEnl + Ini)

and

(1-2) 22v n 1 I C(In I + In n1)

where C is a positive constant independent of X, tO, go, Cn" Vn n and Rm .

Case 2. 2(x2 + (I + Y + f0 + g0 )x + Y + go + Yf0 } - y2.

Case 3. y
2 

4 x
2 + 1 (Y + + Yf 0 ) "

In Cases 2, 3, it is easy to get (1-17), (1-18). Therefore, we conclude that

(1-19) lul + * 4 I ( NEI + Ial

and

(1-20) lm+2 + Ivlm+2 4 C(I Is + In1m)

hold for all A e C, all Re ; 1, where C is a positive constant independent of ), f0

g0. O 1 and Rm. Next suppose u e #,+2' v e *,+2. E e # and n e * satisfy the

following equations:

f (A - R')u + (1 + f)Au + gAv -
(1-21)

(A - Rm)V + fAu + (Y + g)Av -

7-



where A e C, ReA 4 0, R, ) 1, and f,g e a are real-valued functions satisfying

Ifi gI and f(x),g(x) 0 max(- ,- for all x e [0,1]. Let us choose a
a a4 4

partition of unity {#I,,...,ON) as follows:
N k

(i) #i 0, 0 e cm(0,1]), 0, = I on 0,1] and #~),i(x) = 0 at x - 0,1, for
i-I

all k o I1

(ii) supp *i C [0,1] n [xi - di,xi + di], xi e [0,1], for some di > 0 and

If(x ) - f(x)I C C, Ig(xi) - g(x)l 4 C hold for all x e [0,1] n (xi - 2di,xi + 2di].

Note that the choice of N, {* ,...,*N} depends on E and M. Next we define a set of

functions { l,...,N) such that for each i . 1,...,N,

M 0 ( i ( 1, *i e C O( '- );

(1i) i I on [xi - di'xi + di], *i 
= 

0 on - [xi -2dixi + 2di].

C > 0 will be determined later on. By multiplying (1-21) by w' we see that

(1-22) ( R - m)(U* i) + (1 + fi)AWui) + qiA(v i)

* + (1 + f)uAi + 2(1 + f)Uxf + gvAf + 2gvx

+ (f- f)A(u*,i) + (g g)A(vi)

and

(1-23) (A - Rm)(v i) + f iA(v#i) + (Y + gi}Av i) .

i + fuA*i + 2fux#,X + (y + g)vAi + 2(Y + g)vxix

+ (fi - fAu i ) + (gi - gAv i) I

where fi = f(xi), gi - g(xi), i - 1,...,N. From the Appendix, it is easy to see that the

right-hand sides of (1-22) and (1-23) lie in 4 with the following estimates:m

(1-24) E(f i -f)A(u#i)1 0 4 CIA(ufi)1 0 ;

(1-24)* *(f - f)(uti)l I  Cl i(f i  - f)L IA(u i "I  + C1 -ifi  - I) 1 Mu i)13

4 LCAu )I+--( f M4)14W )L3 1 4

( CCIA(u# )I1 + cqI4i(fi - f) 1 (ui)41A(ui10

(2eCin(u*i)1  + j **i(fl - f) h(u i)I ,
£

where C denotes positive constants independent of C, u, *i, *i and fi

(1-24)** ( - f)A(u i)I m 4 CM(0i (f i - f)I IA(u#)I m + l'i *i - 01L 21A(u 0'.1)
L L

-8-



for m ) 2, where Cm  a positive constant which depends only on m;
(1-25) i $ ii C| l i, for all m ; 0

(1-2) 1 im m In 1 0

(1-26) 1(1 + f)uA4 i m 4 C m1 + fi lul IA a, for all m 0

(1-27) (1 + f)U xix I m CMll + fl Iulm+1I#1l 0+1, for all m ) 0

The estimates for the remaining terms on the right-hand sides of (1-22), (1-23) are similar

to (1-24) to (1-27). Thus, (1-20) yields
IA(v*.)I

(1-28) IufilM+2 + IV#ilm+2 4 C m(l(u )Im + m

+ (1 i 3 )(* 1 (f1 - f)1
4
2 + l i(gi - g)l42 + y i- f)l 2 +

C L L Lm m m

+ I*i(g i - g) l 2)(l(ui)Im_1 + td(v 0i)lm_) +

m

+ (Iltm + lrnm)IflI 0 + (I + Y + IfIa + Igl)(lulm+I1

" IV m+1 )( il0 I+ 0ii1+1)) ,

for all m ; 0, it being understcod that 1*m - 0 if m = 0. Cm is a positive

constant which depends only on m and is independent of C, X, Rm, u, v, *,, L n, f

and g. Hence, we could have taken £ so small that CCm < I at the outset. This, in
m 2

turn, determines N, , and 1 1...,*No depending only on E, M. Now we suppose

that such £ was fixed and that the corresponding set of functions ' *I,''',

were chosen for given M. Then from (1-28), we find that

(1-29) lu* IM+2 + Iv*i m+2 4 C(m,M)(II m + lnl + lulm+1 + Ivim+ )

where C(m,M) denotes a positive constant depending only on m and M. By summing (1-29)

over i - 1,...,N, we deduce that

(1-30) lulm+ 2 + Ivim+2 4 C(mM)(IEI m + Inlm + lulm+I + IVim+ 1)

which, combined with the inequality 1 1

(1-31) ul+ C C mUl22ul 2
m+1 an M+2 In

gives

(1-32) IUlm+2 + Ivim+2 4 C(mM)(I& m + lInlm + lulm + IVIM)

where C(m,M) denotes positive constants depending only on m,M. Now (1-21) is equivalent to

S(X - R,)U + Au =  - f~u -gAy{
(X - Rm)v + yAv - f~u - gAv

-9-



Combined with (1-32), (1-19), applied to (1-33), yields

(1-34) lul + eve 4 C (141 + Iil + 21f~ul + 21ghv)
a Is II + R a m ma

• C(mM) (Ice + lINl + lul + eve )JIl + R m I Is m m"

for all A e C, Rex 4 0 and all Re ) 1. Here, C(m,M) is independent of A and R.,

and we may take C(m,M) > -. With this particular C(mM), we define:

(1-35) R(mM) - 2C(m,M)

So for all R, > R(m,M) and all A e C, ReA 4 0, we have

(1-36) tuE + eve C C(amK) (1c1 + If1m)( - ) um m JI, + I '

which, together with (1-32), implies

(1-37) lul + evl 4 C(m,m)([Im + Il )m+2 m+2 m

where C(m,M) is independent of A and R. Now the proof of the case s = m is

completed by the following lema:

Lemma 1.2. Suppose f,g are real-valued functions in G., IfH0" Igi C M and

f(x),g(x) max(- -,- Y) for all x e [0,1]. Let A e C, ReA 4 0 and Rm > R(m,M).

Then, for each &,n e *m, there exist unique u,v e om+2  such that (1-21) holds.

(Proof). We will use the method of continuity. Consider the following equations with

parameter V:

(A - i)u + (I + uf)hu + UgAv -(1-38)

( - Rm)V + ufAu + (y + ug)hv - n

Let us define S e {i e [0,11: for each c,n, e m , there exist unique u,v e 4.+2 such

that (1-38) holds).

It is obvious that 0 e S. Suppose u0 e S and consider the mapping T ,.,n from

Xm+2  into Xm+2  defined by

(1-39) (UV) I- (uv)

where (u,v) is the unique solution of

-10-



{ (A - Rm)u + ( + 0f)A + 3 0gV - E + ( 0 - )f + (0 " u)gha

(I - Rm)v + P 0 fAu + (y + P0 g)hv - n + (P o - 1i)f a + (P0 - U)gh

With the aid of (1-37), we can choose 6 > 0 independent of E, n such that 10 - M1 < 6

implies T ,n, is a contraction for all Lul. The fixed point of T is the unique

solution of (1-38). Hence, S is open. It is easy to see that S is also closed.

Therefore, S - [0,11.

We proceed to consider the case where a ) 0 is not an integer. Let k ) 1 be an

integer such that k - < s < k. Suppose f,g are real-valued functions in

In ' Ik 4 M, and f(x),g(x) ) , max(- for all x e [0,11. Then, we can

determine R(k,N) and R(k - 1,M) by (1-35). Let

(1-41) R(s,K) - max(R(k,N),R(k - 1,M))

and Re be any positive number such that Re ; R(s,M). By taking Rk_ . Rk = Rs , we

def
define A. - A k_1 (0,(glf)) - Ak(,(g,f)). Then, we have proved that for all A e C,

ReA 4 0, and for all R5 • R(s,M),

(1-42) (AI - As)- e B(Xk,,Xk-) n B(Xk_1,Xk+1) n B(XkXk B(Xk,Xk+2)

By interpolation, we can conclude that

(1-43) (At - A )1 e (X Cx ) r B(X aX 5 +2 )

and that

(1-44) lul + lVI 4 C(s 1) +
a AI + 1 I a l

(1-45) luln+2 + Iris+2 4 C(sMH)(II + I1M a

where C(s,M) denotes positive constants which depend only on s,M. Now the proof of

Proposition 1.1 is complete.

Next we shall discuss some properties concerning As(t,(g,f)) and F,(t,(g,f)).

Lemms 1.3. Let (gi,fi) e Xs+ ,. i - 1,2,3, s -0, such that IgI+ 1 ,Ifi|1  • N and

gi(x),fi(x) ; -1 max(- j,- for all x e (0,11, i - 1,2,3. Let Re ; R(s,K) which is

determined by (1-35) if s is an integer and by (1-41) if s is not an integer. Using

this Ra, we define Aa(t,(gi,fi)). Let To be a positive number such that e • 2.

Then for all ti e [0,T], i - 1,2,3, it holds that

-11-
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(1-46) I(As(t 1 ,(gl,fl)) - As(t2 ,(g2,f 2 ))As(t3,(g3 ,f3 ) 3 B(xX)

f C(s,1,Rs)(It I - t2 + 1g1 - 9218+1 + If1 - f2 1s+l)

where C(S,M,R,) is a positive constant which depends only on s,M and Rs .

(Proof). First of all, by (1-1) and Proposition 1.1, we observe that As(t 3 ,(g3,f3 )) e

B(XsX) fn B(Xs,Xs+ 2 ). Set (u,v) - A(t 3 ,(g3 ,f3 )) 1 (g,3). Then,

Rst Rst
Rs ( 3e )&u -g3 e sAv =

(1-47) v t f 3 ARst 3 )A

Rsv -3 e  
9u-( 3e

and

Rt 2  Rt Rt 2  Rt I
[( f 2 e 

R -f e )&u+(g 2 e -g 1 e )AV

(1-48) (A (tI, (gl,fl)) - A (t2 ,(g2 f 2)))(u,v) R t2 R tI R t2 R t I
(f 2 

e  
-fl 

e  
)u+(g2e -g

e  
A1

Using the inequalities in the Appendix, it is easy to see that for all t1 ,t2 e [0,T s ],

(1-49) |(As(t1 ,(gl,fj)) - As(t2,(g 2,f 2 ))}(U,v)l x  C
5

C C(sM'Rs)(Itl - t 21 + |fl - f2 s+I + |gI - 92s+1 )(|us+ 2 
+ 

|Vs+2

4 C(sMRs)(jtl - t 21 + Ifl - f2 1+1 + Jgl - g2ls+l)(Cls + "'s)

from (1-37) and (1-45), where C(S,M,R s ) denotes positive constants depending only on s,

M and Rs.

Next let us define

15 + if 0 4 s < 1

s if s) I

and Fs(t,(g,f)) as in (1-3) using any Rs.

Lemma 1.4. Suppose (gi,fi) e x with igIilfi1 M, i = 1,2. Let Ts be a

T R
number such that e 8 s 4 2. Then, for all t1 ,t2 e [0,T s ], it holds that

(1-51) IFs(t1 ,(g1ff)) - Fs(t 2 ,(g2 ,f2 ))lX  4

• C(sMRs)(Itl - t 21 + 11- 921p+1 + if1 - f 2 19 +1)

where C(s,M,R ) is a positive constant depending only on s, M and Rs.

-12-



(Proof). We write

(1-52) F (t1 ,(g1,f0)) - F1(t 2 ,(g2 1 f2 )) -

R-tR Rtt2(e glxflx - e g2 xf2x) + (E2  A a t 1 - bie Rtif)f 1 - (E - ale Rstg 2

- ble Rs2f2)92

2(e R iglxflx - est g2xf2x ) + (22- a2e R tl g, -2-R 't, fl)fl -(E 2 -a2e R 8t2 g2

- b2e Rt2f2 )f2

With the aid of the inequalities in the Appendix, we can estimate the right-hand side of

(1-52):

(1-53) Ne qlfx - eRt2 2Xf2x I a eI - e Rt2Iglxflx

R t2
+ e 8|91xflx -g2xf2x's

4 C(,M,R3 a)(It 1 - t2 1 + E11 - g2 lp+1 + If1 - f2 1 +)

Rit Rt 2

(1-54) i. 1l - e 92 ( f C(s,M,R*)(Itl - t21 + if1 - f2 |p + Ig -92p)

The remaining estimates are similar to (1-54) and the proof is complete.

Leme 1.5. Let f,g satisfy the same conditions as in Proposition 1.1. Define

As - AS(O,(g,f)) with R• R(s,M). Then V(A ) is continuously imbedded into X if

v 0 where * if 1 and - if 0 4 a < 1, and X is continuously2 a 8 s+28

imbedded into (A ) if 6 > U and 0 < U < 1. C(A P) is equipped with the graph norm.)
a a

(Proof). First we note that Aa is a linear operator in Xs with D(A) = X+ 2  and that

the norm 1.1 is equivalent to the norm IA a()I . Therefore, it follows that

(1-55) Ilxi 4 C(S,M)IA xIX1IxI -eX for all x e X+ 2

where if a )o and 6 if 0 4 9 < 1, and C(,m) depends only on s2 a

-13-



and M. combined with Lemma 17.1 of (2], (1-55) implies that D() is continuously

imbedded into XO if P > . For the remaining assertion, we define the operator

Q 6, 0
0 , 1f- 5 Then, Q is a positive-definite self-adjoint operator in Xa

with D(Q) - Xs+ 2. Then, for all x a D(Q), it holds that

(1-56) 'x C 0, 8, C('SRIM)tIA x I XII-" ( C(psRsM)IUXI PxI

a

where C(U,S,Rs,M) denotes positive constants depending only on U, a, Ra and N. Again

using Lema 17.1 of (2], we conclude that (Q ) is continuously imbedded into D(A
s

where 6 > P. Hence, X is continuously imbedded into D(A ) if 6 > i and 0 < U < 1.s+28 s

Now we are ready to establish the local existence of solutions:

Proposition 1.6. Suppose u0 (x), v0 (x) are real-valued functions in *sv'I > k, a ) 0

such that lu 0 Is+vlIv  C' and Uo(X),VoX) - max(- -, for all x e 0,1.0sV 0 B+V 4 40 x, 0 x 4 4

Let Rs - R(s,M) and using this R., define As - As(0,(u 0 ,v0 )). Then, D(A5 ) - xs+2

and there exists ta > 0 such that (0-3) has a unique solution in

C ([0,t1s; V(A:)] n C((0,ts1D V(As)) satisfying the initial condition u(0,x) - u0 (x),

v(0,x) - v0 (x), where a, 0 and n are positive numbers such that

min(4,-2) > > a > and 0 < n < - . Here ts  depends only on ,(u0,v0 )Is

a, 0, n and s.

(Recall that R(s,M) is defined by (1-35) if s is an integer and by (1-41) if s

is not an integer.)

(Proof). Choose a, 0 and n such that min(-, 3 ) > 0 > a > - and 0 < n < 6- a

Let X be any positive number and define

(1-57) Q (tsK,) = y e c([0,t ]I x ): y(t) is real-vector
valued, y(O) - AO(uoVO) and

ly(t) - y(T)I C Kit - T n, Vt,re [o,tl

We take ts  so small that

(1-58) eR at o < 2 1

(1-59) Ktn C N
S 4L(,s,M)' L(a,s,M) being the positive constant in the inequality

max(Iglp+1,lhlp+I) C L(a,s,M)IAa(g,h)IX  for all (g,h) e V(Aa) I

-14-



(-60) xt1 • 4C(asM) maX(- C(ft,1) being the positive constant in the

inequality

tx(IgI ., lhl ') 4 C(o,s,M)IA (g,h)l for all (g.h) e v(Aa)
L L

By virtue of (1-57) and (1-60), we find that for all t e (0,t5 ], for all y(t) e

Q4 tMK'n),

(1-61) min(p(t,x),q(t,x)} > -Nemax{-,-
2 4' 4

holds for all x e [0.1], where (p(t,x),q(t,x)) = A y(t). we write (0-3) as
d5

d6z(t) + A*(t,z(t))z(t) - F*(t,z(t))

-R t ,-R~tv ~)
where z(t) - (e % u(t,x),e % vtx)) and Re - R(s,M) as above. Let us define the

mapping L on Q(t ,K,n) as follows:

(1-63) w(t) I- A z Ct)

where Zw(t) is the unique solution of

(1-64) + A(tA w(t))z(t) - F (tA wt))

z(O) " (U'oV ) •

By virtue of (1-58), (1-59) and (1-61), it follows from Proposition 1.1 and Lemma 1.3 that

for all w e Q (t K,n) and all t e (Olt], A (t,Aa w(t)) is well-defined with

V(A (t,A *w(t))) = Xa+2 "and satisfies:

(1-65) 1(11 - A (t,A w(t))) I IB x CsX )
a s 3(X,9 IM + I1'

for all A e C, ReA C 0, where C(s,M) is independent of t, w(t) and ),

(1-66) ,{A (tA aw(t 1 ), - As(t2 ,A;awl(t2 ),a (t3 A a2 (t3,,tB(XsX)a

4 C(s,i)(1t I - t2 l + KL(a,s,M)lt1 - t21; ,

for all t. e (0,t.], all wj e Q(t,,x,n), i - 1,2,3, j - 1,2. From Lenma 1.4, we see

that for all w e Q(t .Kn) and all ti e Joltsa. , = 1.2,

(1-67) IF Ctl,A~wVt 1 )) - (t 2 ,A a(t 2 ))Ix '

4 C(s,M)(It1 - t21 + KL(a,s,M)1t1 - t 21 •

Since 2 B, it is obvious that (u0 ,vo ) 6 DAO) by Lemma 1.5. Now we can follow the

-15-



procedure in [2]. Let us denote by Uw(t,r) the fundamental solution corresponding to

A (t,AUOW(t)) for w e Q (t5 K,n). Then the solution z (t) of (1-64) is given by

t
(Z68 z(t) - Uw(t,0) (u01v0 ) + f U (t.,T)F ,A'T)d

and hence,

(1-69) Lw(t) -A*U (t,o)(u01 v ) + A' f tJ(t, )F (.r,Aaw(T))dT
0

Using (1-65), (1-66) and (1-67), we can derive all the necessary estimates (see p. 172 -p.

174 of 12]) to conclude that L maps Q 8 t 0' ,n) into itself and has a unique fixed point
5a-

;in Q (t ,K,n) by taking t5  smaller if necessary. Hence, A7wis a solution of (I-
5 5, s

62) and the same calculation that shows L is continuous yields the uniqueness of solution

in the function class

(1-70) Cn ( [0,t I V(Ac)) r) c((O,t I],V(A )

Next we shall show that the solution gains regularity for t > 0, starting from the

case s -0:

Corollary 1._7. suppose uo(x), VOWx are real-valued functions in *V V, > such that

Eu0 I IV0 I ( and uo(x),v0 (x) > 0 for all x e [0,1]. Using R0 - R(0,M), we define

A0  1 A0(0,(u0 ,V 0)). Then there exists to > 0 such that (0-3) has a unique solution in

C T (O~tIO Ct))r) c((0,t ],V(A )) satisfying the initial condition u(0,x) -=~ )

V(0,x) - v0(WO where a and n are the numbers in the above proposition.

We take to so small that

(1-71) Iu(t,x)15 ,Iv(t,x)15

44

(1-72) u(t,x),v(t,x) > -1 max(- ,-) for all t e E0,t.] and all x e [0,1]

Now let C 0 (t) - (u(t,x),v(t,x)) be the solution to (0-3) in the above corollary. suppose

E (u(t,x),v(t,x)) is a solution to (0-3) in C ([6,t00]l(~ ( M ;Do)

0 < 5 < to, satisfying C(6) (6). Here A0  i!, the same as in the corollary.

-16-



-R0 t -R0

Writing ~t) - • R0to(t) and i(t) 0 e to(t), it is easily seen that both z(t) and

;(t) are solutions of

df y(t) + A0 (ty(t))y(t) - F0 (t'y(t))

(1-73)

1 YG- -R 08 o 4
( 1(-)-a 0

y(6) = • 0 (d),

where A0 (t,.) and F 0 (t,*) are defined with R0 = R(0,H) as in the above corollary. By

virtue of (1-71), (t-72) and the fact that C0 (t) lies in

C((8,t 0 J (A a)) 0l C((8,t0 J ,(A 0 )), we can use the argument in (2] to derive that

Z(t) i z(t) on 16,6 + 0] for some c > 0. By repetition of the argument, we conclude

that z(t) -z (t) on [8,t 0 I. Next we observe that N0 %(t) is uniformly Hdlder

continuous in X0  on each compact subset of (Ot 0 ]. Fix any t e (0,t0]. Then,
t eX We t t° an the Initial tim a as the initial data# noting

that e X, > n - order to apply Proposition 1.6 to the case a

2 2 4

let us define A - A1C0,T 0  with R1 - R(-,M) where M, is a positive number such

M1

that sup lu(r,x)l2 , sup (v(Tx)I 4 - . From Proposition 1.6, there exists
* * 2 4

a number 61 > 0 depending only on M I (a, S and n are fixed) such that (0-3) has a

unique solution C (it) in Out(I-, 1- + 61 )sP(A*)) n C((t , -+ 811iV(A1)) satisfying

* 2 2

E -2) Since P(A) is continuously imbedded into V(A), C1(t) " C0(t) on

* *

it +a1 n[-.t0 by the uniqueness of solution. Nov if we take any other point of

(t* ,as our initial time and the corresponding (t) as our initial data, then .

the length of the time interval of existence, remains the same in view of the above

argument. Therefore, if - + 6 < to, we can extend C1(t) on the whole interval

to] such that C1 (t) e c((-,t 0 ],x 1  ) and EI(t) t-%(t) on t-, to].
2+ F T

Consequently, C0 (t) 8 c(,T-'t°]x 1 +)" Next define -- + " + and suppose that
-+2 22k

2
-17-



ctt ;Xk ) has been proved. Then, C0(t ) e X V
0 k 0 k +2 0 :+1 k+1 Take

tk+, as the initial time, & (t +1) as the initial data, and dehne
. :0 k +

+ A(O'C(t *+)) with Rk+ - R(k-- --,Mk+J., where Mk+l is a positive number such

2 2 2 2

that sup Iu(rx)Ik , sup Iv(T,x)Ik 4 C k+1 . Applying Proposition

re~~t +t]2 re t 22Te[tk+1 t 2 Te[t k+1 t 2 2

1.6 to the case s - - 2 , we obtain a local solution

C+,(t) e CI([t+ 1 ,t:+ 1 + 6k+1] VtK+1)) n C((t+ 1 ,tk+1 + 6k+l]IV(Ak+l)), where 8k+1 > 0
2 2

depends only on +1 By the uniqueness of solution and the fact that D( is
kI-

2 2

continuously imbedded into D(A0 ), +(t) (t) on [tk+,,tk+1 + 6k+1 r [tk+lt0]o As

above, we can extend Ek+ (t) on the whole interval [t+ 1 ,t0 ] to arrive at

t0 (t) e C((t k+l1t0];Xk+1 ). By induction, we conclude that C0 (t) e C([t*,t];Xk) for
- +22

all k ) 0, and consequently u(t,x),v(t,x) e C ((0,t0 ] x [0,) from (0-3) and the fact

that t* was chosen arbitrarily.

Finally we shall prove that u(t,x),v(t,x) are nonnegative. We may write (0-3) as

(1-74) ut .(1 + v)Au + 2v ux + (AV + (E- alu - bv)}u

(1-75) vt - (Y 
+ 
u)Av + 2u v {Au + (E a bv)}v

Since Av(t,x) and Au(t,x) may not be bounded near t = 0, we cannot apply the

classical maximum principle directly to (1-74) or (1-75) to prove that u(t,x),v(t,x) ) 0.

However, the maximum principle can be used on the interval [8,t 0  for any 6 > 0, since

u(t,x),v(t,x) e C((0,t 01 x 10,1]). Thus, it is enough to prove that u(t,x),v(t,x) ) 0

for all x e (0,1] and all t e [0,6], where 6 is some positive number. For this

purpose, let us denote by (un(t,x),vn(t,x)) the solution to (0-3) with the initial

,! vn(,x) - v0 (x) + - , n ) 1. We choose R0 = R(0,M),
n

where M is the number such that I + luIv I + Iv0 1 Using this R0, we define

A0 (t,.), and write A A 0(0'(u0'v ) ), An A0 (0,(u 0 + 
.
- V + I)). Now all then 0 n ~

constants in the estimates to establish the local existence of solutions (u(t,x),v(t,x)),

(un(tx),Vn(t,x)), n > 1, can be taken uniformly with respect to n (recall the proof of

Proposition 1.6). Thus, there exists 6 > 0 independent of n I 1 such that z(t) e

-18-



C ([0,].D(A,)) n C((0,6];(A 0 )) is the solution of

d
(1-76) d zlt) + Ao(t,zlt))zlt) - 1olt,zltl)

(1-76)

z(O) - (uov O )

and z n(t) e c ([0,83,V(A )) n C((0,6]YVLA ))is the solution of

!L zn(t) + Aolt'zn ( t) = Fo(tgzn(t))
(1-77) dt A~gnt)

=n(0) - (u0 + ' vO +1.1,

- Rt -Rt
where z(t) - (u(t,x),v(t,x)) and zn(t) e a (un(t,x)evn(t,x)), n ) 1. Choose any

a such that a > a > - Then, (AQ ) is continuously imbedded into V(A and
Sn 0

consequently, z(t),zn(t) e C (10,861] (A)) ) C1(0,6]i1(A)). Subtracting (1-77) from (1-

76), we write

(1-78- (zt) - n 0 (tz(t))((t) - Zn(t)) -

= {A0(tz nt)) - A0 (tz(t))
I
Z 
n
(t) + Fo(tz(t)) - Fo(tZn(t)•

Let U(t,T) be the fundamental solution associated with A0 (t,z(t)). Following the

argument in [2], we can write

(1-79) z(t) - Zn(t) - U(t,T)(z(r) - z n()) +

t
+ f U(t,s){A (szn(s)) - 0(s,z())}z (s)ds

t
+ f U(t,s){F0 (s,z(s)) - F0 (a,zn(s))})ds

T

for all 0 < T 4 t 4 5, and subsequently, arrive at the inequality: for all 0 < 6 • 6,
(1-80) sup Izlt) - zn(t) C{- + - sup Izlt) - z (t)l -

ne08 V(A) nl n DCA 1)
te0o,l] 0 te[o,l] 0

where C is a positive constant independent of n and 5. Hence, for some 0 < S C 6,

Iz (t) - zlt)I - + 0 uniformly on (0,6], as n + -, from which it follows thatn (A)
Un(tix) * u(t,x) and vn(tx) + v(t,x) uniformly on (0.1] x [0,11. Since

unlt,x),vn(t,x) e c((0, 1 x (0,11) r) C(10,61 x [0,1) and unl0,x)uvn(Ox) - for all

xe [0,1], it is easily deduced that un(tx),vnlt,x) ) 0 for all (t,x) e [0,81 x 10,11

-19-
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with the aid of the maximum principle. Therefore we conclude that u(t,x),v(t,x) )-0 for

all (t,x) e [0,31 x [0,1]. We have completed the proof of the main theorem:

5
Theorem 1.8. suppose uo(x),v0 (x) are nonnegative, real-valued functions in 0,v >

Then, there exists to > 0 such that (0-3) has a unique solution in

Cn ((0t t 0 (Aa)) f [c ((0,t 0  [ 0,11)]12 satisfying u(O,x) - uo(x), v(0,x) - vo(x)

and ux(t,x) - vx(t,x) - 0 at x - 0,1, for all t e (0,t0]. Furthermore,

u(t,x),v(t,x) > 0 for all (t,x) e [0,t0] x (0,11. (n., a and AO0 are the same as in

corollary 1.7.)
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Section 2. Global 9xistence of Solution

In the previous section, we obtained a unique solution (u(tx),v(t,x)) to (0-3)

satisfying u(O'x) - u0 (x). v(0ex) - v0 (x). Let 10,T) be the maximal time interval to

which (u(tx).v(twx)) can be extended so that (u(tex),v(tx)) lie in

C o([0,T);,(Aa)) ) [C"((0.T) x (0,11)12. Our purpose in this section is to prove thatlo 0

T - . under the hypothesis y - 1. In view of the local existence theorem, it is enough

to prove that lu(tx) 12 lv(tx)l2  are bounded near t a T, assuming T <-. Assuming

y - 1, we write (0-3) as

(2-1) ut " M~u + u 
2 

+ UO) + M, 1 - au - bv)u ,

(2-2) vt - A(v + v
2 

- vC) + (Z 2 - 62U - b 2 v)v ,

(2-3) Ct . AC + G

where - v - u and G - (Z2 - a2u - b v)v - [M, - alu - blv)u. The estimates will be

obtained through three steps.

(Step 1) Multiplying (2-1), (2-2), (2-3) by u,v.-aC, respectively and integrating over

(0,11, we get. using the fact that u(t,x), v(t,x) ) 0 and Ux(tO) - ux(t,l) - vx(tO) -

vx(t,1) - 0,

(2-4) dI 2 1 2
x (1 f 2 2dx I f (AC)u2 dx + f E1

2dx
0 0 0 0

I f 2 1
(2-5) j F id C 1+v ) dx- f (a)v dx+ 2v2 d

0 0 0

4 1 1:x (A) 2 dx ( )d

from which it follows that

(2-7) d 121 1 1 2d

dt~ C +v
2
4.~)dx 4 f (1 + u)u~dx f (12vvd A)d.0 0 0 0

1 1
+ K f Cu

2 
+ v)dx + f Cu

4 
+ v

4
)dx, for all t e (0,T)

0 0
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where K is a positive constant depending only on Z1eE2. Integrating (2-1) and (2-2)

over [0,1], we obtain

1 1

(2-8) f udx - z, f udx, for all te (0,T),
0 0

and

1 1

(2-9) _ f vdx ( E2 f vdx, for all t e (0,T)
0 0

from which follows

(2-10) f udx + f vdx 4 M0 , for all t e (0,T)
0 0

where N0 is a positive constant depending only on the initial data, E1 , E2  and T.

From (2-10) and the inequality:

(2-11) if 2 1 q (1 + j).f1 2
2 + elf 122, for all C > 0, all f e r2[0,13L(-1 L 2 L2

we find that

1 1

(2-12) lul 1 + f u
3
dx + £ f uu2dx

L 0 0

1

4 (1 +.9 )o , 2 + C fUUxr , for all C > 0, all t e [0,T)
L 0

and hence,

1 1 E~ll" "1 in2

(2-13) - I uu2dx 4 1(1 + -l2 I3 for all c > 0, all t e 10,T)

0 L L

In the amm way,

1 9 .2 1 iv3

(2-14) -f vv 2dx -C ( + 2V - " lv for all c > 0, all t e 10,T)x + 1jJMOlI
0 C e L C L
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Substituting (2-13), (2-14) into (2-7) and using (2-10), we have

(2-15) d I (U
2 

+ + 2 2 2 1 (Ac) 2dx
12-,5) dt 2o Y u2 + 2 (f) •_o (u1 + )dx-~ f

0 0 0

* K f (u 2 + v
2
)dx + INm0 (Jul 3  + IV1 3 ,)

0 L L

* 1 (1 + 4j)mo(lul 2, + ivl 2 .) _ " (,u1 3 . + 1V13.)
L L L L

2
which can be rewritten, after taking C 2

40

(2-16) d1x f (U2+ v2)dx- f (C) 2 d
0 0 0

1 2 13
+ f (u2 + v2)dx - " M0(lul3  + IV3

0 L L

1 3 1 2 9 2

Since 0 3 + 2 + 9 )T C(M 0 ) for all T > 0, we can apply Gronwall's

inequality to deduce that

I
(2-17) f (u2 + V2 + C 2)dx • M, for all t e 10,T)

0

where 1  is a positive constant depending on El, E2, T, U0L2 Iv 0 1L2 and

L L
IOx x 2-

L
(Step 2) Multiplying (2-1), (2-2) by -hu,-Av, respectively, and integrating over

[0,13, we obtain

1 d 1 222

(2-18) f - udx 4 - j (AU) 2  - fo u(Au)dx - ( uA + 2ur) .dx

1 1 1

+ K f u2 1Auldx + K J uvlAujdx + K J uxdx, for all t e (0,T)
0 0 0

-23-
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and

1 1 1

+ K " v21AVldx + K f uvlAvldx + K f Vxdx, for all t e (0,T)
0 0 0

where K denotes positive constants depending only on Eiai,bi, i - 1,2. Applying the

Laplacian A to both sides of (2-3), multiplying by AC and integrating over [0,11, we

have

1 d 1(2-20) - j (A) 2dx I - 2 + f 2dx, for all. t e (0,T)2 dt 0

Now we will estimate each term on the right-hand sides of (2-18), (2-19) and (2-20):

1 1 12 2 2

(2-21) If u(AC)(Au)dxI IAI lul21AUl2 9 IAul
2 + 21ACI lul

0 L L L L L L

L IAul2 + + L) I &A 2  
+ II2

8 L 
2  

C L" 2 I L 21
L L

IAuE2  + j IAC 12 + C(M )IA12 , for all t e (0,T)

8 L L L2

which follows from (2-11) w.-h c =

1 1 212

(2-22) if 2uCxAudxl - If (AC)u 2dxI 4 IAI u dx
0 0 L 0

- IAI a f (-Uuxx)dx ( IAI LUl2 L2

L 0

IAuI~2 + . IAC 122 + C(M1 )IAhU
2
2 , for all t e (0,T)

L2 L 2 L2

1 K2 f1 1 1 f11 2
(2-23) K f uvlAuldx 2 f u4dx + K2 f v4 dx + () au 2dx, for all t e (0,T)

0 0 0 0
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(2-24) f u4dx 4 1u12  f I u2 dx 4 N41(1 + .1)1,l 2 + M clut122  for all c 0
0 LO0 L 2 1 xL 2

and all t e (0,T)

Similar inequalities hold for K f u2lIuldx and Iv 4dx. Combining these inequalities,
0 0

ye got

(2-25) K f u Ihldx +K uvihujdx 4 fC)d
0 0 0

4.C(K(l 2 *v*2 ~+C+ (1'K( x 2 + Vx12 1411,K), for all t e (0,T)
L L

The right-hand side of (2-19) can be estimated analogously to (2-21), (2-22) and (2-25).

1 11
(2-6) f GdxC KJ ~4 v)dx + K f CU2 + v2V(uj + v2.)dx

0 0 x 0

2I V 24 2v 2
4 xJ (ux .v)dx + 4XM l2 A1 2 (1K(Iu x 1 2

L L L

+. IV x*2 ). for all t e C0,T)
L

where K denotes positive constants depending only on Rifai~bis i - 1,2. Now suing (2-

I8), (2-19) and (2-20), we find that

(2-27) d IJ (U~ 2 + 2 + () 2)dX 4 CC14i,3i#4a±bi) f I(U~ 2 +2 +(V2 d
dt0 x 0 4. (A)

+. C(M15 3ilairbi), for all t e (0,T)

from which we derive, using Gronwall's inequality,
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(2-18) f {U2 + v 2 + (AC)2}dx r M2, for all t e [6,T)
0

where 0 < 6 <T and M2  is a positive constant depending on 8,T and
lu 0(x)lv + Iv 0(x) V . Here ye fix 6 and proceed to the last step.

(Step 3) Apply the Laplacian A to both sides of (2-1), (2-2), (2-3), multiply the

resulting equations by Au,Av,-A 2, respectively, and integrate over (0,1):

1 21 1 1

(2-29) - f (Au)2dx c - f (Au ) dx f u(Au) 2dx - f 6u (Au)(A)
0 0 0 0

1 1

- 3Cx(Au)(Aux)dx - f 3ux(A)(Aux)dx
0 0

111 1,1

f 1u(A~)(Au)dx +1 f I (AH)
2
dx + f I (Au)

2
dx, for all t e (0,T)

0 2 0 20

wherr H - (E1 - alu b1V)u,

(2-30) 2d (AV )2 dx f - 6v (Av)(Av )dx
0 0 0 0 x x

1 1

+ f 3Cx(Av)(Avx)dx + f 3vx(AC)(Av x)dx

0 0

1 11j 1 21

+ f v(ACxlAV )dx + - f (4j)
2
dx + - f (Av)2dx, for all t e (0,T)

0 0x 2 0

where 3 (92 - a2u - b2v)v,

(2-31) 1 I (ACx - 1 I (G)2dx.
02 dt 0 2 0

As before, we will estimahe each term on the right-hand sides of tne above inequalities.

i
(A) Estimate of f u (Au)(Au x)dx.

0
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First we observe that

(2-32) f (AU)24. fl ux..x" ' (f u2x)2 2  dx) 2

0 0 0 0 d 0
0x

(2-33) (Au(t,x))
2 

. 2 f uxxuxxxdx, for all x e [0,1], t e (0,T)

a

where a is a point depending on t such that u xx (ta) - 0, and hence,

1 1

(2-34) lAUl 4 ( f u2 2 dx) (f Ux
2 

dx , for all t e (0,T)
L 0 0

Using (2-32), (2-33) and the inequality: a'b1
-  

( Xa + (1 - X)b, for all ab ) 0,

0 < I < 1, we obtain

(2-35) iI u (Au)(Au )dX 2 I (Au)3 dxI '- f (Au) 2 d x

0 20 0 0

1 2,1 1 3 1

4 f 2 dx) 4 u 2 x)J u dx2
r2 0' M 01 4 2 f324 C3 "2o 0 4:'  0 !

for all c > 0, all t e [6,T).

I

(B) Estimate of f U (AC)(Au )dx
0

We write, by integration by parts,

u x (hl)(hu x)dx - - (AC 2Au)2dx - f Ux(ACxl)'dx.

0 0 0
1

x 1
since IACI . I AC x dx (f (ACx)2dx)2 a being the point at which AC - 0, we see

L a 0
that
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1 11

(236(i x,11 2)ic~r 22X)( 12 2
(2-36) Ifl (Awlau) 2dx C IA ,, f (-UxUxxxdx C (f (AC)d)(f u dx)(j u dx)

0 L0 0 0 0

2.,1

C K2(f (hC )2 dx)2 (f 2 x)2 , for all t e C6,T)
20 x 0 x

On the other hand,

(2-37) I (AC )Audxi If (2C 2 1 .f( C22dx)2

0 x x20 2 xL0

a xx 0 (A C)dx)
21 1 1 1

2 (f u 2  f ud) f (&22r)2) 2 x
0 0 0

'~ 30 x df(4C 2d for all t e [6,T)
0 0

From (2-36), (2-37), we have

(2-38) if ux(AC(Auxl u f u2xxx + c f (Ad) 2 dx
0 0 0

M! 1 (tX2 2x

+ M2 f ((AC )2 + u }dx, for all c > 0

all t e (6,T).

1 1

(C) Estimates of f (Au) (Au )dx and f u(ACx)(Aux)dx
0 0

It is easily seen that

(2-39) 1C (tx)I 4 f lA~idx C (f (&C) d,) 2 C M2, for all t e (6,T)
x Lf 0 0

from which follows
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(2-40) if Cx(u)(Au~)x) I ~ IxL mlAulL21Ax2 I;HI~l2A xl

22

2 ¢IAu T + IAUI 2  for all c > 0 and all t e [6,T).x L2'

with the aid of (2-11), we obtain

1
1

(2-41) If u(ACx)(AUx)del 4 lul NACxlL21AUx L2 < (N2 + 2N1 ) 21ACxI 2AU x' 2
0 L L

2 1 m1 ICx,22  al )0
x 12_ I + (H4 + 214 ) I A  for all € > 0
xL 2 2 1 L 2

and all t e 16,T).

(D) stia-te o f ((A)2 + (AJ) + (A 2)dx.
0

it is obvious that

1 21(J
2  

2

J &H)2 + (A2 + (AG2)dx 4 X f (u 2 + v 2)Au)2 + (Av2)dx +
0 0

+K I 4 (2 + ' V) 2 x + x ((A-) 2 + (Av) 2 )*ix
0 0

where K denotes positive constants depending on BKiai,bi, i - 1,2. Using (2-11) with

€ - 1, we have

(2-42) f (u 2 + v 2 )((Au)2 + (AV) 2 )dKx (NUl 2 + Iv2m) f' ( Au)2 + (A})2 )dx
0 L L 0

2
4 (K2 + 2H 1) ((Au), + ( ) ldx , for all t e 16,T).

0
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I 2 2 )2 (f' 1AVd) C fl(.2 f(W

lUx I,+ IV 2  ( IAudx)2+ (  I6vldx)2 
( 0 (Au)2 dx + 0 (Av)2dx' for all

LD L 0 0 0 0

t a (0,T),

we find that

(2-43) + ( 2 22-U, + )2dx ( N2 j (Au)2 dx +"2 " 
(hv)2dx' for all t e [6,T)

The remaining estimates can be obtained similarly to (A), (B) and (C). Adding (2-29),

(2-30), (2-31), and substituting the above inequalities into the right-hand side, we obtain

by taking E sufficiently small

I 
I

(2-44) d f, (Au) + (Av)2 + (AC) 2dX < C(Ei'aieb'M1 ((}2 + (A)2 + (A)2 x,
(Ei ai I,4,12 ) f I00

for all t e (6,T)

where C(Ei,a,bimiM 2 ) denotes a positive constant depending only on Ei,ai,b,

i - 1,2, and M1,M 2 . We deduce by Gronwall's inequality that

1
(2-45) f ((&u) + (Av)2 + (Ax)2ldx 4 M3, for all t e (6,T)

0

where M3 is a positive constant depending on 6, T, MI* M2 and Eu 01 + v0 |1 .

Combining the above estimates and Theorem 1.8, we can conclude:

Theorem 2.1. Suppose y - I in (0-3) and u0 (x),v 0 (x) are real-valued, nonnegative

functions in # , v > 5 Then, (0-3) has a unique global solution in

Cno(0O,,);D(Aa)) r (c"((O,-) x 0,11))2  satisfying u(Ox) , Uo(X), v(O,x) . VO(X)

and ux(t,x) , vx(t,x) - 0 at x , 0,1, for all t > 0. Furthermore, it holds that

u(t,x),v(t,x) > 0 for all (t,x) e (0,.) x (0,11.

-30-



Appendix

[A-1] Multiplication is a continuous bilinear map of 0 0 into % provided

1 " 6
4

= 2 2
(Proof). Since #0 . L

2  
and is continuously imbedded into L1  for any

1 2
e ( , the assertion follows from the fact that multiplication is a continuous bilinear

2 2

map of L1  L1  into L for C 4 , which is a special case of Theorem 9.4 in

[5].

(A-2] If S > 0 and n is a nonnegative integer, then multiplication is a continuous

bilinear map of 4 0 into 9.
a Om2 +C+W

(Proof). Let f ancosnwx e o and g - b comnx e Define
n-0 n + and g-O ne

k k
fk " ancosnwx and gk - I bncosnlx. Then, as k *., f + 

f in *1 , gk *g
n-0 n-0 n -+M

2

in Om' and f kgk e n *I for each k. Now multiplication is a continuous bilinear
J-1

2 i T

mapp:'-g from L I into I by Thore 9.5 in [5]. Thus, fk k + fg as k -
i+C+m
22

in 2 since *1 and 0s are continuously imbedded into L and 2,
I+C.,. -f + ,.U

respectively. The norm 1*1m is equivalent to the norm I1L2 and hence, (fkgklk. is

a Cauchy sequence in 4m, from which we deduce fg e Is

(A-3] Multiplication is a continuous bilinear mapping from S 19 into 9

provided S ) 0, C > 0. 
1+ s

(Proof). The assertion follows from (A-2] by interpolation [1].

[A-4] Multiplication is a continuous bilinear mapping from 9 0 into 9 provided

S )1.

(Proof). If a ) I is an integer, the norm 1.1 is equivalent to the norm II2 and

L
m

it is easy to see that multiplication in a continuous bilinear mapping from 2 2

2 2
into L;. Since 9 is continuously imbedded into L, the assertion follows when

s - m, and the general case follows by interpolation.
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(A-5] Multiplication is a continuous bilinear mapping from 4 0 4 into 4

provided 0 s ( 1. 4 4 4 4

(Proof). By interpolation, the proof is immediate from [A-1] and [A-41.

[A-6] Define F : (f,g) -- > f Then, r is a continuous bilinear mapping:

W 5 5 - > t0
4 4

(ii) #m+, & fm+ 1 - > Om, for all integers m ) 1.

(Proof). i) Suppose f e 45 and g e 45. Since 05  is continuously imbedded into L5
4 4 4 4

and to = L2, the assertion follows from Theorem 9.4 in [5].

(ii) Letf cosnwx e # and g b cosnwx e m. Define
n m+1 nn=0 n=0

k k n
f k a n a nnWX and gk b n bnWX. Then, fkxgkx e A i  for each k, since

n-o n-0 i.1
1

sin(nwx)sin(1wx) = - {cos(n - L)zx - cos(n + L)wx). In the mean time, 0m+ 1 and 4 are2 2 2

continuously imbedded intoL+ and L', respectively, and the norms 1-1 'I1, are

equivalent to the norms 1.1 2 ,1-1L2' respectively. Therefore, fkxgkx -> fxgx  in
L M+ LLm+1 m

2 and {f is a Cauchy sequence in 4m , from which the conclusion follows.

(A-7] r is a continuous bilinear mapping:

i) 45 4 &-> 45 provided 0 4 a 4 1
Z 4 i+is

(ii) 4s+l 04+ - > 4s provided s o I

(iii) 0 3 0 1-> 1 0 provided £ > 0
-- +E

(iv) 5  0 2-> 2 provided e > 0
-- +£2

(v) 4 0 -> 4S provided a ) 0 and s + - < U
1A+1 S+j 6 2

(Proof). (i) and (ii) follow from [A-6] by interpolation [1], and (iii) to (v) can be

proved by the same argument as in [A-3], [A-6], and by interpolation.
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